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Supporting Information Text

1. The immigration-drift model of pathogen dynamics

A. Steady-state distribution and the backward equation. The steady-state distribution of the pathogen dynamics (Eq. 11) is a
Dirichlet distribution with the parameter vector θ (1),

ρs(Q) = 1
Z(θ)

∏
i

Qθi−1
i =: D(Q, θ). [1]

The normalizing constant is the multivariate Beta function, defined in terms of Gamma functions as Z(θ) =
∏
i
Γ(θi)/Γ(|θ|).

To obtain a solution to Eq. 11 we write ρ(Q, t) as the product of the steady-state distribution ρs(Q) with a time-varying
function f(Q, t)

ρ(Q, t) = ρs(Q)f(Q, t). [2]

f(Q, t) can be shown to obey the backward equation

τ
∂f(Q, t)

∂t
= 1

2
∑
a

[
(θa − |θ|Qa) ∂

∂Qa
f(Q, t)

]
+ 1

2
∑
a,b

[
Qa(δa,b −Qb)

∂2

∂Qa∂Qb
f(Q, t)

]
. [3]

By considering a coalescent dual process a probabilistic expansion can be derived from the backward equation (App. B). This
probabilistic expansion forms the basis of the approximate count dynamics Eqs. 6,7. It also suggest an efficient method to
sample from the transition density used in the simulation of the pathogen dynamics (Sec. E). A decomposition of f in Jacobi
polynomials, which are the eigenfunctions of Eq. 3, allows us to derive an efficient method to analytically solve the Bayesian
prediction and update steps (App. C). We use this alternative method to benchmark the quality of the inference achieved by
the approximate counting scheme (Fig. 2).

B. Dirichlet mixture expansion of the belief distribution. Let us assume that the belief distribution at some time B(Q, t) is a
mixture of Dirichlet distributions

B(Q, t) =
∑
m

cm(t)D(Q,m+ θ), [4]

with m = (m1,m2, · · · ) for integer mi and mixture coefficients cm ≥ 0,
∑

m
cm = 1. In particular this assumption holds true

for the prior belief at t = 0 which is described by the single component m = 0. Both the update and prediction step of the
inference procedure can be reduced to a much simpler procedure in terms of the mixture coefficients as derived below. Using
the mixture assumption f(Q, t) = B(Q, t)/ρs(Q) is a mixture f(Q, t) =

∑
m
cm(t)fm(Q) of functions

fm(Q) = (|θ|)|m|
∏
i

Qmii
(θi)mi

, [5]

where (a)m = a(a+ 1) · · · (a+m− 1). We can interpret the mixture coefficients as a probability distribution and define an
average of a quantity x as 〈x〉 =

∑
m
cmxm. Using this notation the expected frequency is given by

Q̂ = 〈(m+ θ)/(|m|+ |θ|)〉. [6]

To perform the update step Eq. 3 we calculate

Qafm(Q) = θa +ma

|θ|+ |m|fm+ea(Q). [7]

Here and in the following we define ei as the unit basis vector with i-th entry 1 and all other entries 0. It follows that the new
belief distribution is still a mixture of Dirichlet distributions with

cm+ea(t+) = θa +ma

|θ|+ |m|cm(t−)/Z, [8]

where Z = 〈(θa +ma)/(|θ|+ |m|)〉cm(t−) is a normalization constant. To gain intuition about Eq. 8 let us consider the static
environment limit τ →∞. Applying Eq. 8 sequentially starting from the prior belief shows that the belief distribution remains
composed of a single component (cm = 1 for m = m?(t), cm = 0 otherwise) in this limit, where m?(t) is the vector of counts
of how often the different pathogens have been encountered. This is a classical result in Bayesian statistics (2). The fact that
the belief distribution stays within the Dirichlet family when performing Bayesian updates starting from a Dirichlet prior is
known as the conjugacy property of the Dirichlet prior with regards to the categorical likelihood function. The interpretation
of m as the number of observations of a particular category motivates thinking about the θi as pseudocounts, as according to
Eq. 4 they are added to the counts of different categories to pull the estimate of the frequencies closer to the prior expectations.
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The prediction step Eq. 4 asks for an application of the backward operator A† to f(Q, t). As the backward equation is
linear it acts independently on the different components. Applying A† to fm yields

A†fm(Q) = 1
2(|m|+ |θ| − 1)

[
K∑
i=1

mifm−ei(Q)− |m|fm(q)

]
. [9]

By considering A† in Eq. 9 as acting on m we obtain a dual death process description of the Wright-Fisher diffusion (3).
Transitions from m → m − ei happen at a rate 1

2 (|m| + |θ| − 1)mi. The belief distribution continues to be a mixture of
Dirichlet distributions with mixture coefficients that change as

τ
dcm
dt = 1

2 (|m|+ |θ|)

(∑
i

(mi + 1)cm+ei

)
− 1

2 (|m|+ |θ| − 1) |m|cm. [10]

Let us define the mean count vector 〈m〉=
∑

m
cmm. Its dynamical equation is

d〈m〉
dt =

∑
m

m
dcm
dt . [11]

Some algebra leads to the surprisingly simple yet exact equation

τ
d〈m〉

dt = −1
2 〈(|m|+ |θ| − 1)m〉. [12]

The probabilistic expansion allows the derivation of an efficient approximate scheme for inference. For peaked mixture
distributions cm we can to a good approximation invert the order of calculating the expectation value and the product in
Eq. 12, i.e.

〈(|m|+ |θ| − 1)m〉 ≈ (|〈m〉|+ |θ| − 1)〈m〉. [13]

For peaked mixture distribution the update equation for the mean counts upon encountering pathogen a is approximately

〈m(t+)〉 ≈ 〈m(t−)〉+ ea, [14]

and the expected frequencies are approximately

Q̂ ≈ 〈m+ θ〉/(|〈m+ θ〉|). [15]

Dropping the explicit notation for the average and replacing n := m+ θ we obtain the following equations for the total counts:

na(t+) = na(t−) + 1 when a is encountered [16]

τ
dna
dt = −1

2 (|n| − 1) (na − θa) for all a. [17]

C. Spectral expansion of the belief distribution. As in App. B we decompose the belief distribution but now we decompose
f(Q, t) into the eigenfunctions gn(Q) of the backward operator. This approach leads to simpler decoupled equations for the
prediction step of the Bayesian inference. To simplify notations we consider the case K = 2 but the derivation generalizes to
arbitrary K (3). Note that to describe the dynamics of the frequency of any particular pathogen, we can lump together the
frequencies of the other K − 1 pathogens for the model we consider. In particular, as the rates of immigration of different types
are independent of composition of the population, the dynamics of the chosen pathogen does not depend on distribution of
pathogens among the other types. The dynamics of the i-th type for arbitrary K can thus be mapped to K = 2 by setting
θ1 := θi and θ2 :=

∑
j 6=i θj .

The steady-state distribution specializes from the Dirichlet distribution to the Beta distribution for K = 2

ρs(q) = qθ1−1(1− q)θ2−1/Z, [18]

where Z = B(θ1, θ2) = Γ(θ1)Γ(θ2)/Γ(θ1 + θ2) is the Beta function. The eigenfunction gn for an eigenvalue λn needs to fulfill
the backward equation (Eq. 3), which leads to

1
2q(1− q)

d2gn
dq2 (q) + 1

2(−θ2q + θ1(1− q))dgn
dq (q) = −τλngn(q), [19]

where q = Q1. Up to a rescaling this equation is a Jacobi differential equation. The solutions of this differential equation are
the modified Jacobi Polynomials

gn(q) = P (θ2−1,θ1−1)
n (2q − 1), [20]
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where P (a,b)
n (x) is the n-th Jacobi polynomial with eigenvalue

λn = 1
2τ n(n+ θ1 + θ2 − 1). [21]

Let us first state a number of properties of these polynomials which we will need later. The polynomials form an orthogonal
system with respect to the weight function qθ1−1(1− q)θ2−1, i.e.∫ 1

0
dq gn(q)gm(q)qθ1−1(1− q)θ2−1 = δn,m∆n(θ1, θ2), [22]

where the normalization coefficients ∆n(θ1, θ2) are given by

∆n(θ1, θ2) = Γ(n+ θ1)Γ(n+ θ2)
(2n+ θ1 + θ2 − 1)Γ(n+ θ1 + θ2 − 1)Γ(n+ 1) . [23]

For n ≥ 1 the polynomials are related by the recursion formula (4)

qgn(q) = φ−n gn−1(q) + φ0
ngn(q) + φ+

n gn+1(q), [24]

with coefficients

φ−n = (n+ θ1 − 1)(n+ θ2 − 1)
(2n+ θ1 + θ2 − 1)(2n+ θ1 + θ2 − 2) , [25]

φ0
n = 1

2 −
θ2

2 − θ2
1 − 2(θ2 − θ1)

2(2n+ θ1 + θ2)(2n+ θ1 + θ2 − 2) , [26]

φ+
n = (n+ 1)(n+ θ1 + θ2 − 1)

(2n+ θ1 + θ2)(2n+ θ1 + θ2 − 1) , [27]

while for n = 0
qg0(q) = φ0

0g0(q) + φ+
0 g1(q), [28]

with coefficients

φ0
0 = θ1

θ1 + θ2
, [29]

φ+
0 = 1

θ1 + θ2
. [30]

Now let us write f(q, t) as a linear combination of the eigenfunctions gn of the backward equation as,

f(q, t) = 1 +
∞∑
n=1

dn(t)gn(q), [31]

with time-varying coefficients dn(t). The prediction step of the Bayesian inference leads through Eq. 19 to a simple exponential
decay of the dn,

ddn(t)
dt = −λn. [32]

The update step of the Bayesian inference leads through Eq. 24 to

dn(t+) = χ−n dn−1(t−) + χ0
ndn(t−) + χ+

n dn+1(t−), [33]

where χ−n , χ0
n, χ

+
n are constants. These constants are normalized versions of the coefficients φ that appear in Eq. 24,

χxn =
{
φxn/(c0

0 + d1(t−)c−1 ) if pathogen 1 encountered,
(δx,0 − φxn)/(1− c0

0 − d1(t−)c−1 ) if pathogen 2 encountered,
[34]

for x in −, 0,+, and where δx,0 = 1 for x = 0 and δx,0 = 0 otherwise. For efficient numerical computation note that the update
step can be performed as a matrix multiplication of the triadiagonal matrix which has c0

n along the diagonal, c−n+1 above the
diagonal, and c+

n−1 below the diagonal with the vector of coefficients d(t−) followed by a normalization step. We finally note
that the expected frequency is obtained from Eq. 31 as

〈q(t)〉 = c0
0 + c−1 d1(t). [35]

The timescale over which the pathogen frequencies change is set by the slowest timescale of the stochastic dynamics, i.e.

τc = 1
λ1

= 2τ
θ1 + θ2

. [36]

This result generalizes to the general case K > 2 as
τc = 2τ

|θ| . [37]
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D. Defining an effective timescale for learning in changing environments. The total number of counts |n| follows a piecewise
deterministic decay process interspersed by updates at random times. We approximate this stochastic dynamics by the
deterministic equation,

d|n|
dt = − 1

2τ (|n| − 1)(|n| − |θ|) + λ, [38]

where we have replaced the stochastic jumps in the counts do to pathogen encounters by a source-term λ equal to the rate of
such jumps. This differential equation is separable and can be solved, which for |n(0)| = |θ| yields

|n(t)| = |θ|+ 1
2 +√η tanh

(
t
√
η

2τ + artanh
(
|θ| − 1
2√η

))
, [39]

for
η = 2λτ + (|θ| − 1)2

4 [40]

Considering the limit of long environmental correlation times, 2λτ � (|θ|−1)2

4 , we obtain the simplified expression

|n(t)| − |θ| ≈
√

2λτ tanh
(

λt√
2λτ

)
. [41]

If we further take the limit 2λτ � (λt)2 of no attrition, then we recover the simple linear scaling of the expected number of
encounters with time

|n(t)| − |θ| ≈ λt. [42]
The number of remembered encounters |n(t)| − |θ| relative to the effective number of present pathogens |θ| controls how much
memory improves protection (Fig. 3).

E. Efficient simulation by sampling from the transition density. The transition density of going from x to y in time t for the
Wright-Fisher diffusion can be written as (3)

f(x,y, t) =
∞∑
|l|=0

q
|θ|
|l| (t)

∑
{l:|l|fixed}

M(l,x)D(y, θ + l), [43]

whereM(l,x) is the multinomial distribution

M(l,x) =
(
|l|
l

)
xl11 · · ·x

lK
K , [44]

and where q|θ||l| (t) are the transition functions of a dual pure death process. This description of the transition density can be
derived based on similar arguments to those made in App. B (3). The death process describes the loss of unmutated lineages
going backward in time through coalescence and mutations. For small times q|θ||l| (t) is asymptotically normal with mean µ(t)
and variance σ2(t) (5, 6)

µ(t) = 2η
t
, [45]

σ2(t) =
{ 2η

t
(η + β)2 (1 + η

η+β − 2η
)
β−2, β 6= 0,

2
3t , β = 0,

[46]

where β = 1
2(|θ| − 1)t, [47]

and η =

{
eβ

eβ−1 , β 6= 0,
1, β = 0.

[48]

To sample from the transition density function we thus proceed in three steps: Generate a normally distributed random number
|l| according to the asymptotic distribution of q|θ||l| (t). Then draw l fromM(l,x). Finally, draw y from D(θ + l).

2. Induced repertoire dynamics

A. Dependence of fold change upon a pathogen encounter on sparsity. To understand how memory production depends
on environmental sparsity we specialize Eq. 9 to the case of a uniform prior distribution. We then have |n| ≈ Kθ and
Z− ≈

∑
a

1/K1/(1+α) = Kα/(1+α), which for Kθ � 1 leads to κ = 1/(K1+αθ). The fold change upon an encounter of a
pathogen starting from a naive repertoire P̃−a = 1/K thus depends as follows on the sparsity of the environment,

P̃+
a /P̃

−
a = [1 + 1/θ]1/(1+α). [49]
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B. Mean-field dynamics. Besides the large changes of the naive repertoire upon a primary infection there are situations in
which the inferred distribution is changing in a more continuous manner, e.g. updating in the limit of many previous samples,
or the prediction step. We thus now ask how small changes in the expected frequencies of pathogens Q̂ change the coverage P̃ .
We assume that there is no cross-reactivity fr,a = δr,a, and consider power-law cost functions, where we have optimal receptor
frequency distribution P ?r = Qβr /Z with β = 1/(1 + α). As a preliminary we calculate the Jacobian

∂P ?r

∂Q̂r′
= δr,r′

1
Z

∂Q̂βr

∂Q̂r
− Qβr
Z2

∂Z

∂Q̂r′
, [50]

= βP ?r

[
δr,r′

Q̂r
− Pr′

Q̂r′

]
, [51]

We can then show that the dynamics in terms of P ?r follows,

dP ?r
dt =

∑
r′

∂P ?r

∂Q̂r′

dQ̂r′
dt , [52]

= P ?r

[
β

d ln Q̂r
dt −

∑
r′

Pr′β
d ln Q̂r′

dt

]
, [53]

which is of the form of a replicator equation
dP ?r
dt = P ?r

[
fr − f̄

]
[54]

with “fitness" fr = β d ln Q̂r
dt and mean fitness f̄ =

∑
r′ Pr′fr′ .

Based on this general result we now analyze the dynamics of the repertoire due to the sequential Bayesian filtering.
Equivalently to Eq. 14 the change of inferred distribution ∆Q̂ = Q̂

+ − Q̂ upon encountering antigen a is given by

∆Q̂ = ea − Q̂
|n|+ 1 , [55]

where ea is the unit vector with a-th entry one and all other zero. Asymptotically for large |n| every update has a small effect
only, and we might consider a mean-field description. In this description we replace ea by its expectation value Q and define
an average rate of change per unit time by multiplying the update size by the frequency λ of pathogen encounters:

dQ̂
dt = λ

|n|+ 1(Q− Q̂). [56]

Here Q is the actual distribution of pathogens, and Q̂ are the expected frequencies of pathogens based on the immune system’s
internal belief. For the prediction step we have a dynamics for counts, which we can convert into a dynamics for the inferred
distribution. We have Q̂r = nr/|n| and a dynamics on counts given by Eq. 7. From there we obtain

dQ̂r
dt = 1

|n|
dnr
dt −

nr
|n|2

d|n|
dt , [57]

= − (|n| − 1)|θ|
2τ |n| (Q̂r − Q̂0

r), [58]

where Q̂0
r = θr/|θ| is the prior guess for the distribution. Taken together we have

dQ̂
dt = γ(t)(Q− Q̂)− δ(t)(Q̂− Q̂0). [59]

with the (time-varying) coefficients

γ(t) = λ

|n(t)|+ 1 , [60]

δ(t) = (|n(t)| − 1)|θ|
2τ |n(t)| . [61]

The fitness in the replicator equation is then

fr = β

(
γ(t)Qr

Q̂r
+ δ(t) Q̂

0
r

Q̂r

)
. [62]
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The fixed point of the dynamics in a static environment δ(t) = 0 is the optimal repertoire as expected from the asymptotic
optimality of Bayesian inference. Replacing Q̂r = (ZP ?r )1+α we then obtain a fitness

fr = γ(t)
Z1+α

Qr
(P ?r )1+α [63]

which except for the prefactor is equivalent to the population dynamics proposed previously in (7). That work did not consider
the prefactor that leads to a slowing down of the dynamics with time to reflect a tradeoff between new evidence and past
experience. The prediction steps relaxes the inferred distribution towards the prior distribution with a speed that for large |n|
is proportional to |θ|/τ .

C. Updating a cross-reactive repertoire. We now consider the repertoire dynamics in the presence of cross-reactivity. In a first
order Taylor expansion the change in the repertoire composition upon a pathogen encounter is given by

∆P ? ≈ JG(Q̂)∆Q̂, [64]

where
(JG)r,r′(Q̂) = ∂Gr(Q̂)

∂Q′r
[65]

is the Jacobian of the mapping function (Eq. 1).
The mapping between pathogen frequencies and the optimal repertoire takes the form G(Q) = F−1P̃ ?(Q) (if achievable

given the constraint that no receptor frequency can be negative). P̃ ?(Q) is a function that depends on the cost function. The
Jacobian can thus be calculated using the chain rule as

JG(Q̂) = F−1J P̃? (Q̂). [66]

For the power-law cost function we have P̃ ?a = RQ̂βa/Z, where R =
∑

a
fr,a is the row sum of F , which assume to be constant.

Analogously to the derivation of the Jacobian in the previous section we derive

∂P̃ ?a

∂Q̂a′
= βP̃ ?a

[
δa,a′

Q̂a
− P̃a′

RQ̂a′

]
, [67]

from which with some algebra follows

∆P ? ≈
(
R

P̃ ?a

)α 1
(1 + α)(|n|+ 1)Z1+α

(
RF−1ea − P ?

)
. [68]

Here, there is a departure from the dynamics of the number Nr of lymphocytes with receptor r proposed in (7),

∆Nr = Nr∆t
[
A(Ña)fr,a − d

]
, [69]

where proliferation is proportional to fr,a, instead of (F−1)r,a.
We can also consider autonomous dynamics for the total number of lymphocytes carrying receptor r, N = χF−1nβ , with

P = N/|N | (with no concern for the normalization of N to be constant). The population dynamics then read:

∆N = BF−1 [(FN)−α.er
]

when r is encountered [70]

τN
dN

dt
= χ1+αF−1 [(FN)−α.θ

]
−N . [71]

with B = χ1+α/(1 + α) and τN = 2(1+α)τ/(|(FN/χ)−α|−1) is a global homeostasis parameter. Powers are taken element-wise,
and x.y denotes the element-wise product of vectors. The prediction step Eq. (71) can be plausibly implemented by a thymic
source defined as τ−1

N χ1+αF−1 [(FN)−α.θ
]
, and a constant decay term. The update step Eq. (70) could be realized by a

quorum sensing mechanisms (through cytokine-mediated cell-cell communication) combined with differentiated responses as a
function of affinity fa,r.

3. Inference of high-dimensional categorical distributions from few samples

A. Mean cost versus time. In this Appendix we will derive analytical expressions for the optimized cost as a function of time

c(t) =
K∑
a=1

Qa(t)c(P̃ ?a (t)) [72]

with the following simplifying assumptions: absence of cross-reactivity, fa,r = δa,r and P̃ ?a (t) = P ?a (t); no attrition, τ → +∞;
and a power-law cost function c(P ) = P−α. The prior on Q is a homogeneous Dirichlet distribution:

P (Q) ∝
K∏
a=1

Qθ−1
a . [73]
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This problem is equivalent to the Bayesian inference of a distribution drawn from a Dirichlet meta-distribution. Asymptotic
convergence properties of Bayesian inference procedures are well-established (2), but the convergence speed of Bayesian
estimators of the distribution in the non-asymptotic regime has been much less studied to our knowledge. Analysing the
behaviour of c(t) is equivalent to analysing the convergence of the estimated distribution to the true one with increasing number
of samples. Here we will establish the relevant scaling for few samples.

We consider the biologically relevant regime of high dimension but effective sparsity of the distribution, Kθ � 1, θ � 1.
Our main insight is that for such sparse distribution Bayesian inference is effective when the number of samples is on the order
of a few Kθ, instead of the potentially much larger K.

The prominent role sparsity plays in allowing for more efficient estimation is reminiscent of compressed sensing (8). Non-
asymptotic results about inference in high-dimensional settings have been explored recently in the context of machine learning
(9). Both connections merit further exploration.

We define the expected cost as 〈c(t)〉, where the average is taken over both random choices of Q, and random realizations of
the pathogen encounters, n, which are distributed according to:

na(t) ∼ Poisson(λtQa), [74]

where λ is the encounter rate. The number of encounters determine the average belief for Q,

Q̂a(t) = θ + na

Kθ +
∑L

a=1 na
≈ θ + na
Kθ + λt

, [75]

which itself shapes the optimal response and thus the cost through Eq. 72:

P ?a (t) = Q̂a(t)1/(1+α)

Z
, [76]

where Z is a normalization constant.
Note that the cost can be expressed in terms of a divergence between the best receptor distribution P ? given full knowledge

of Q and the actual receptor distribution P . Defining P ?a = Q
1/(1+α)
a /Z̃ and replacing into Eq. 72, we obtain:

c(t) = Z̃1+α
∑
a

(P ?a )1+αP−αa = c∞ exp [αD1+α(P ?‖P )] , [77]

where c∞ = Z̃1+α is the asymptotic cost for P = P ? and where Dβ(P ‖Q) := (β− 1)−1 ln[
∑

a
P βa Q

1−β
a ] is the Rényi divergence

of order β, which reduces to the standard Kullback-Leibler divergence for β = 1, i.e. α = 0.

B. Reducing the problem to a single pathogen. By symmetry all terms in the sum of Eq. 72 are equal on average and we have

〈c(t)〉 = K

∫
dq ρ(q)q 〈c(p)〉n, [78]

where we have introduced the short hand notations q := Qa and p := P̃a, and where the average is taken over n := na. The
pathogen frequency q is approximately Gamma-distributed:

ρ(q) ≈ (Kθ)θ

Γ(θ) qθ−1e−Kθq. [79]

In general, the expectation value depends through p on all previous encounters with any of the pathogens (i.e. all the other
na′ , a′ 6= a). In high dimensions we can approximate this dependence by neglecting the correlation of the normalization factor
Z with q̂ and using an effective Z. For the power law cost functions we then have

p = q̂
1

1+α /Z with Z ≈ K〈q̂
1

1+α 〉. [80]

For logarithmic cost this simplifies to p = q̂ and Z = 1. From Eq. 80 it follows that

〈c(t)〉 ≈ KZα〈qq̂−
α

1+α 〉 = K1+α〈q̂
1

1+α 〉α〈qq̂−
α

1+α 〉. [81]

We have q̂ = (θ + n)/(Kθ + λt), but as the equation is invariant to a linear rescaling of q̂ we can replace q̂ by simply θ + n.
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C. Costs for perfect or no information. Asymptotically the distribution is learned perfectly and we have q̂ = q. Plugging this
into the expressions derived previously we obtain

c̄∞ := 〈c(∞)〉 ≈ K1+α〈q1/(1+α)〉1+α, c̄∞ ≈ −K〈q ln(q)〉, [82]

for the power-law and logarithmic cost function respectively. Performing the integrals we obtain

c̄∞ ≈ (Kθ)αΓ(1/(1 + α))1+α, c̄∞ ≈ ln(Kθ) + γ, [83]

where Γ(z) is the Gamma function and γ the Euler-Mascheroni constant. For α = 1 this specializes to c̄∞ = πKθ. For the
logarithmic cost c̄∞ is equal to the Shannon entropy of the distribution, which suggests an interpretation of Kθ as the effective
number of pathogens that are present.

We can compare these costs for those obtained for a uniform repertoire

c̄0 := 〈c(0)〉 = Kα, c̄0 = ln(K), [84]

to obtain
c̄∞/c̄0 ∝ θα, c̄∞/c̄0 = (ln(Kθ) + γ)/ ln(K) [85]

for power law and logarithmic cost respectively. As expected, in more sparse environments a larger relative improvement can
be obtained by learning the distribution.

D. Scaling in the limit of few samples. In the limit of small sampling, each pathogen has been seen at most once, meaning
that n is binary and distributed according to a Bernoulli variable with mean λtq. Then we can use the approximation
〈(θ + n)β〉 ≈ θβ(1− λtq) + λtq to obtain

〈q̂
1

1+α 〉 = θ
1

1+α + (1− θ
1

1+α )λt〈q〉 ≈ θ
1

1+α + λt

K
[86]

〈qq̂−
α

1+α 〉 = θ−
α

1+α 〈q〉+ (1− θ−α1 + α)λt〈q2〉 ≈ θ−
α

1+α

K

[
1− λt

Kθ

]
[87]

Putting things together we obtain

〈c(t)〉 ≈ Kα
(

1 + λt

Kθ
θ

α
1+α

)α (
1− λt

Kθ

)
≈ Kα

(
1−

(
1− αθ

α
1+α
) λt
Kθ

)
, [88]

which, except for a correction that vanishes as θ → 0, scales with λt/(Kθ).
For the logarithmic cost we approximate similarly 〈ln(θ + n)〉 ≈ (1− λtq) ln(θ) + λtq ln(1 + θ) ≈ (1− λtq) ln(θ). We then

have
〈c(t)〉 ≈ ln(Kθ + λt)−K ln(θ)

[
〈q〉 − λt〈q2〉

]
. [89]

Using the formulas for the first and second moments we obtain

〈c(t)〉 ≈ ln(Kθ + λt)− ln(θ)− λt

Kθ
ln(1/θ) [90]

Approximating further we have

〈c(t)〉 ≈ ln(K)
(

1−
(

1− ln(Kθ)− 1
ln(K)

)
λt

Kθ

)
. [91]

Again the relative cost depends solely on λt/(Kθ) except for logarithmic corrections that vanish as K →∞ for fixed Kθ.

4. Infection cost in the expansion-delay regime

We have previously described mechanistic models that give rise to a power-law dependency of infection cost on the coverage (7),
in which we have assumed thatthe crucial determinant of infection cost is set by the time delay to recognition of the pathogen
by the immune system. Experimental evidence shows that the initial recruitment of a large fraction of all specific lymphocytes
often happens rapidly compared to the time it takes for the adaptive immune system to start clearing the infection (10). We
thus might hypothesize that the advantage of higher precursor numbers lies not in shortening the time to detection but in
shortening the time to response by a sufficiently large number of effector cells.

To derive the scaling of infection cost with coverage under these conditions, we consider that after an infection at time 0, the
number of specific cells grows exponentially with a rate γ, N(t) = N(0)e−γt. During the same time the pathogen population
grows exponentially as well at a rate γp, P (t) = P (0)e−γpt until a time t? at which a threshold level N? of specific cells is
reached. The expansion-delay time scales as t? = ln(N?/N(0))/γ. If we assume that the cost of an infection is proportional
P (t?), then the cost scales as a power law with the initial number of specific cells N(0)−γp/γ .
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5. Supplementary figures
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Fig. S1. Comparison of the dynamic scaling of the relative cost gap for c(P̃a) = − lnP̃a (colored) and c(P̃a) = 1/P̃a (grey, see Fig. 3). For both cost functions rescaling
parameters as λte/Kθ collapses the relative cost gaps for different parameters onto a similar master curve.
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Fig. S2. Most of the benefit of memory is still achieved if the immune system has a slightly wrong prior about the antigen distribution sparsity θ. (A) Scaling of mean cost of
infections with different priors θ̃ for a correct θ = 0.01 (K = 1000). (B) Relative increase in cost by using a wrong prior vs age.
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Fig. S3. The timescale of memory attrition does not need to be finely tuned for near-optimal prediction. Relative cost of infection at age 40 years as a function of the relative
attrition timescale τ̃/τ for environments with different correlation times τc = 2τ/Kθ. Parameters: α = 0.5, K, θ, λ as in Fig. 5.
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Fig. S4. While the optimal update of the receptor frequencies for uncorrelated pathogen environments (blue line) shows a depletion of close but suboptimal receptors such an

effect might be reversed for correlated pathogen environments (orange line). We use a Gaussian kernel to describe cross-reactivity f(|a − r|) = e|a−r|
2/(2σ2

, and a
spacing of receptors 0.5σ. Assuming a change in inferred pathogen frequencies upon encountering pathogen a of ea for the uncorrelated case (unit vector in a direction) and

fa = e(x−a)/(2σ2
c ) with σc = 2σ for the correlated case we obtain the optimal update in terms of receptor frequencies by multiplying the inverse of the cross-reactivity

matrix F with the change in frequencies.
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Fig. S5. For large changes in inferred frequencies the optimal repertoire can change drastically (blue line). A restriction to local changes yields a repertoire providing close to
optimal protection, which exhibits a depletion of good, but suboptimal receptors (orange line). The inset shows a zoomed view of the distribution around the position of the
sampled pathogen. To obtain the global (local) optimal repertoire we use a projected gradient algorithm to minimize the cost function over all receptor distributions (over only the

disribution of receptors within 2σ of the pathogen in shape space). We use a logarithmic cost function, |θ| = 10, Gaussian kernel f(|a − r|) = e|a−r|
2/(2σ2), and a

spacing of receptors 0.5σ.
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